

Dam Breach Parameters

Christopher Goodell, P.E., D.WRE Kleinschmidt Associates Portland, OR USA

Purpose

 To develop a breach outflow hydrograph that can be routed downstream to determine flood inundation, flood wave arrival timing, and ultimate consequences.

Options:

- Use parametric equations for peak discharge and formation time to approximate a breach hydrograph.
- Use physically based breach models.
- Use parametric equations and guidelines for breach width, side slopes, and formation time to develop the breach within a flood routing model.

Types of Dams

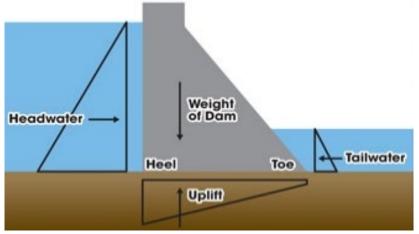
Know what kind of dam you're breaching

Concrete Gravity

Concrete Arch

Embankment

Combination



Types of Failures

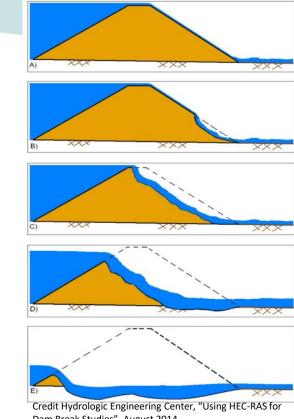
- Concrete Gravity Dams
 - Composed of multiple monoliths
 - Foundational failure
 - Sliding, shifting, sinking of one or more monoliths
 - Extreme overtopping
 - Sliding shifting, toppling of one or more monoliths

Austin Dam (Pennsylvania)

Types of Failures

Concrete Arch Dams

- Composed of multiple monoliths
- Very thin (relative to gravity dams)
- Arch translates force from impoundment to abutments
- If strength of arch is compromised, breach could include entire dam section.


Types of Failures

Embankment Dams

- Earth or rockfilled
- **Erosional Failure**
 - **Overtopping**
 - **Piping**

Dam Break Studies", August 2014

Breach Development Guidelines

Dam Type	Average Breach Width (B _{ave)}	Horizontal Component of Breach Side Slope (H) (H:V)	Failure Time, t _f (hours)	Agency
Earthen/Rockfill	(0.5 to 3.0) x HD (1.0 to 5.0) x HD (2.0 to 5.0) x HD (0.5 to 5.0) x HD* Multiple Monoliths Usually \leq 0.5 L	0 to 1.0 0 to 1.0 0 to 1.0 (slightly larger) 0 to 1.0 Vertical Vertical	0.5 to 4.0 0.1 to 1.0 0.1 to 1.0 0.1 to 4.0*	USACE 1980 FERC NWS USACE 2007
Concrete Gravity	Usually ≤ 0.5 L Multiple Monoliths	Vertical Vertical	0.1 to 0.2 0.1 to 0.5	NWS USACE 2007
Concrete Arch	Entire Dam Entire Dam (0.8 x L) to L (0.8 x L) to L	Valley wall slope 0 to valley walls 0 to valley walls 0 to valley walls	≤ 0.1 ≤ 0.1	USACE 1980 FERC NWS USACE 2007
Slag/Refuse	(0.8 x L) to L (0.8 x L) to L	1.0 to 2.0	0.1 to 0.3 ≤ 0.1	FERC NWS

^{*}Note: Dams that have very large volumes of water, and have long dam crest lengths, will continue to erode for long durations (i.e., as long as a significant amount of water is flowing through the breach), and may therefore have longer breach widths and times than what is shown in Table 3. HD = height of the dam; L = length of the dam crest; FERC - Federal Energy Regulatory Commission; NWS - National Weather Service

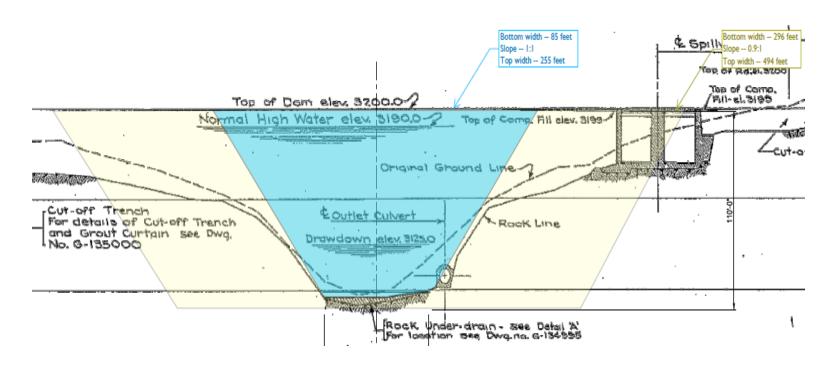
Parametric Equations

- Embankment Dams
- Need size, shape and formation time of the breach opening
- Several regression
 equations exist for width,
 side slope, formation
 time, and peak discharge

Resources:

- Wahl, Tony L., 1998. Prediction of Embankment Dam Breach Parameters – A Literature Review and Needs Assessment. Dam Safety Research Report DSO-98-004. U.S. Bureau of Reclamation.
- Hydrologic Engineering Center, 2014. Using HEC-RAS for Dam Break Studies. Technical Document TD-39.

Table 2 - Breach Parameter relations based on dam-failure case studies.

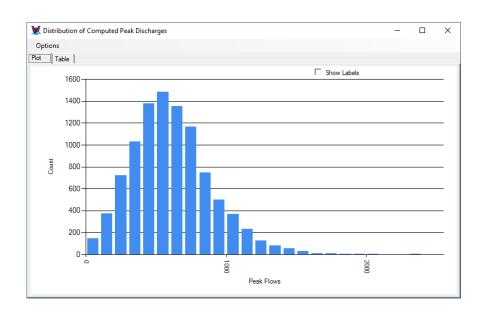

For explanations of symbols see the Notation section at the end of this report.

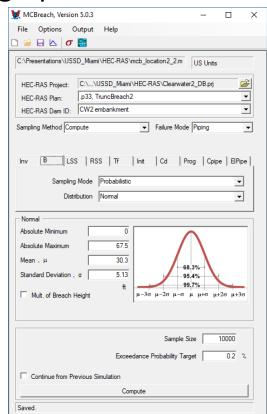
Number of Relations Proposed				
Reference	Case Studies			
Johnson and Illes (1976)	Case Studies	(S.I. units, meters, m ³ /s, hours) $0.5h_d \le B \le 3h_d$ for earthfill dams		
(/	20			
Singh and Snorrason (1982, 1984)	20	$2h_d \le B \le h_d$		
(1982, 1984)		0.15 meters $\leq d_{ovtop} \leq 0.61$ meters		
MacDonald and	42	$0.25 \text{ hours} \le t_f \le 1.0 \text{ hours}$		
Langridge-Monopolis	42	Earthfill dams: $V_{er} = 0.0261(V_{out}*h_w)^{0.769}$ [best-fit]		
(1984)		0.554		
(1964)				
		Non-earthfill dams:		
		$V_{er} = 0.00348(V_{out}*h_w)^{0.852}$ [best-fit]		
FERC (1987)		B is normally 2-4 times h_d		
		B can range from 1-5 times h_d		
		Z = 0.25 to 1.0 [engineered, compacted dams]		
		Z=1 to 2 [non-engineered, slag or refuse dams]		
		$t_f = 0.1-1$ hours [engineered, compacted earth dams]		
T 11: 1 (100T)	42	$f_f = 0.1 - 0.5 \text{ hours}$ [non-engineered, poorly compacted] $\overline{B}^* = 0.47 K_o (S^*)^{0.25}$		
Froehlich (1987)	43	$\overline{B} = 0.47 \text{K}_{0} (\text{S}^{*})^{0.25}$		
		$K_o = 1.4$ overtopping; 1.0 otherwise		
		$K_o = 1.4$ overtopping; 1.0 otherwise $Z = 0.75K_c(h_w^*)^{1.57} \left(\overline{W}^*\right)^{0.73}$		
		$K_c = 0.6$ with corewall; 1.0 without a corewall		
		$t_f^* = 79(S^*)^{0.47}$		
Reclamation (1988)		$B = (3)h_w$		
		$t_f = (0.011)B$		
Singh and Scarlatos	52	Breach geometry and time of failure tendencies		
(1988)		B_{top}/B_{bottom} averages 1.29		
Von Thun and Gillette	57			
(1990) 57		B , Z , t_f guidance (see discussion)		
Dewey and Gillette (1993)	57	Breach initiation model; B , Z , t_f guidance		
Froehlich (1995b)	63	$\overline{B} = 0.1803 \ K_o V_w^{0.32} h_b^{0.19}$		
		$t_f = 0.00254 V_w^{0.55} h_b^{(-0.90)}$		
		$K_0 = 1.4$ for overtopping; 1.0 otherwise		

Figure 8. Summary of Regression equations for Breach size and Failure Time (Wahl 1998)

Physical Constraints

- Evaluate site-specific conditions that might affect breach development
 - Erosion-resistant foundation, Cutoff walls, adjoining structures


Physically Based Computer Models


- Can produce breach size, shape, and formation time, as well as breach outflow hydrograph
- Examples:
 - NWS-BREACH (BRCH-J)
 - WinDAM
 - HR-BREACH

Probabilistic Approach

- Acknowledge the high degree of uncertainty with breach development prediction
- Use Monte Carlo Method to predict exceedance probabilities of breach outflow hydrographs
- Automation
- McBreach, HR-BREACH

Thank You!

Chris Goodell, Kleinschmidt Associates Chris.Goodell@KleinschmidtGroup.com www.TheRASSolution.com