A robust, permanent upstream passage system for juvenile American eels Penobscot River, Maine

June xx, 2017

Jesse Wechsler, Fisheries Scientist – Kleinschmidt Richard Dill, Fisheries Scientist - Brookfield

Migration

Management and Status

- Cultural significance (Nga taonga tuku iho te tuna; The eel An ancient gift from the gods)
- Important fishery sustenance/commercial (depleted stock ASMFC)
- Endangered in Ontario; species of concern in the U.S. (2 listing petitions)
- "There's gold in them thar eels"
 - Recent increase in demand (Asian aquaculture)
 - Value < \$200 a pound (2010) to \$2,600 (2012)
 - 9,700 pound quota in Maine (2016)
 - \$12 M harvest in Maine (2017)

Regulatory Compliance

Federal Energy Regulatory Commission may require a dam/hydro owner to:

- perform an American eel passage location study;
- identify the location of eelway(s) and design specifications;
- outline a schedule for installing the facility;
- develop an operational and maintenance plan;
- develop a monitoring plan; and
- work with state, federal, and tribal organizations.

Monitoring at Dams

Visual, nighttime surveys

- Repeated "spotlight" surveys
 - below spillways,
 - face of dam,
 - bedrock outcrops,
 - rough concrete support walls,
 - tailrace areas,
 - every nook, every cranny
 - predictable and repeated patterns

Monitoring at Dams

Designing Eelways at Dams

- Location, location, location
- Design, design, design
 - Slope and orientation
 - Substrate
 - Cover
 - Attraction flow
 - Conveyance flow
 - Predators
 - Spill and high flows
 - Access
 - Debris and Maintenance
 - Monitoring

Traditional Seasonal Ladders

- Temporary (e.g., wooden, aluminum)
- Difficult to access; increased safety risk
- High-maintenance
- Delayed installation due to high river flows
- Subject to debris and damage
- Limited flow / passage conditions
- Inexpensive

Robust Permanent Eelway Design at Low Head Dam

- Permanent
- Flow-through
- Less safety risk
- Lower maintenance
- Longer operational period (permanently deployed)
- Higher range of flow conditions
- Expensive

Orono Dam, Penobscot River (ME)

Source: ESRI, Kleinschmidt

Orono Dam, Penobscot River (ME)

Eel Fishway at Orono Dam

Eel Fishway at Orono Dam

- Design characteristics
 - 54.75-ft (16.7-m) long
 - 4.5-ft (1.4-m) wide
 - 14-ft (4.3-m) elevation (tailwater to normal headpond el.)
 - Lateral slope = 24 degrees
 - Vertical slope = 20 degrees
 - Conveyance flow = approximately 1 cubic feet a second (0.03 mps) at normal head pond el.
 - Grizzly rack at exit for debris mgmt.
 - Bristles:
 - 2.75 inches tall (70 mm)
 - 1 inch space between bristles; rows staggered every 0.5 inches

Eel Fishway at Orono Dam

Orono Dam, Penobscot River (ME)

Orono Dam, Penobscot River (ME)

VIDEO MONITORING (2016)

• Methods/Results

A robust, permanent upstream passage system for juvenile American eels Penobscot River, Maine

QUESTIONS?

Jesse Wechsler Jesse.Wechsler@kleinschmidtgroup.com

Richard Dill Richard.Dill@brookfieldrenewable.com

